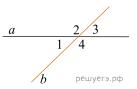
Централизованное тестирование по математике, 2014

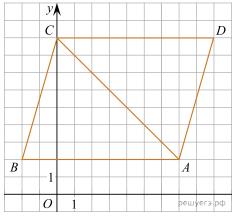

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- **1.** Даны дроби $1\frac{4}{7}$, $4\frac{4}{7}$, $4\frac{2}{7}$, $4\frac{1}{7}$, $1\frac{1}{7}$. Укажите дробь, которая равна дроби $\frac{29}{7}$.

 1) $1\frac{4}{7}$ 2) $4\frac{4}{7}$ 3) $4\frac{2}{7}$ 4) $4\frac{1}{7}$ 5) $1\frac{1}{7}$
- **2.** Укажите номер рисунка, на котором изображены фигуры, симметричные относительно прямой l.

3. Прямые a и b, пересекаясь, образуют четыре угла. Известно, что сумма трех углов равна 220°. Найдите градусную меру меньшего угла.



- 1) 140° 2) 110° 3) 15° 4) 20° 5) 40°
- **4.** Результат разложения многочлена x(4a b) + b 4a на множители имеет вид:

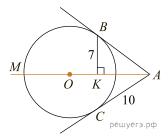
1)
$$(4a-b)(x-1)$$
 2) $(4a-b)(x+b)$ 3) $(4a-b)(x+1)$ 4) x 5) $x+1$

5. Вычислите $\frac{6,4^2-3,3^2+9,7\cdot 4,9}{8}.$ $1) \frac{9}{7} \quad 2) \ 9,7 \quad 3) \frac{9}{8} \quad 4) \ 6 \quad 5) \ 6,72$

6. На координатной плоскости изображен параллелограмм ABCD с вершинами в узлах сетки (см.рис.). Длина диагонали AC параллелограмма равна:

1) 9 2) $9\sqrt{2}$ 3) $2\sqrt{2}$ 4) $7\sqrt{2}$ 5) 7

7. Длины катетов прямоугольного треугольника являются корнями уравнения $x^2 - 5x + 2 = 0$. Найдите площадь треугольника.


8. Пусть a = 2.9; $b = 8.7 \cdot 10^3$. Найдите произведение ab и запишите его в стандартном виде.

1)
$$2523 \cdot 10^1$$
 2) $0,2523 \cdot 10^5$ 3) $2,523 \cdot 10^2$ 4) $25,23 \cdot 10^3$ 5) $2,523 \cdot 10^4$

9. Выразите n из равенства $\frac{3+m}{2}=\frac{n-m}{8}$.

1) n=5m+12 2) n=10m+24 3) n=5m-12 4) n=10m-24 5) n=2m+3

10. Из точки A к окружности проведены касательные AB и AC и секущая AM, проходящая через центр окружности O. Точки B, C, M лежат на окружности (см. рис.). Известно, что BK = 7, AC = 10. Найдите длину отрезка AK.

1) 51 2) $\sqrt{149}$ 3) $\sqrt{51}$ 4) 3 5) 7

11. Даны два числа. Известно, что одно из них меньше другого на 4. Какому условию удовлетворяет большее число x, если сумма квадратов этих чисел не меньше удвоенного квадрата большего числа?

1)
$$x \ge 8$$
 2) $x \le -2$ 3) $x \ge -2$ 4) $x \ge 2$ 5) $x \le 2$

12. Свежие фрукты при сушке теряют a % своей массы. Укажите выражение, определяющее массу сухих фруктов (в килограммах), полученных из 50 кг свежих.

1)
$$\frac{5000}{100+a}$$
 2) $\frac{5000}{a}$ 3) $\frac{50(100-a)}{100}$ 4) $\frac{5000}{100-a}$ 5) $\frac{50(100+a)}{100}$

13. Объем конуса равен 9, а его высота равна $\frac{1}{2}$. Найдите площадь основания конуса.

1)
$$\frac{1}{6}$$
 2) 6 3) 54 4) $\frac{2}{27}$ 5) $\frac{27}{2}$

14. Известно, что наименьшее значение функции, заданной формулой $y = x^2 + 8x + c$, равно -5. Тогда значение c равно:

15. Строительная бригада планирует заказать фундаментные блоки у одного из трех поставщиков. Стоимость блоков и их доставки указана в таблице. При покупке какого количества блоков самыми выгодными будут условия второго поставщика?

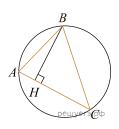
Поставщик	Стоимость фундаментных блоков (тыс. руб. за 1 шт.)	Стоимость доставки фундаментных блоков (тыс. руб. за весь заказ)
1	210	1700
2	230	950
3	285	бесплатно

16. Расположите числа 2^{20} , 9^6 , 33^4 в порядке возрастания.

1)
$$9^6$$
, 2^{20} , 33^4 2) 2^{20} , 33^4 , 9^6 3) 9^6 , 33^4 , 2^{20} 4) 2^{20} , 9^6 , 33^4 5) 33^4 , 9^6 , 2^{20}

17. Через вершину A прямоугольного треугольника ABC ($\angle C = 90^{\circ}$) проведен перпендикуляр AK к его плоскости. Найдите расстояние от точки K до прямой BC, если AK = 4, AB = 9, $BC = \sqrt{33}$.

1) 13 2) 7 3)
$$4\sqrt{3}$$
 4) $\sqrt{97}$ 5) 8


18. Сумма корней (корень, если он единственный) уравнения $\sqrt{2x-3} \cdot \sqrt{x+1} = 3-x$ равна (равен):

1)
$$\frac{-5-\sqrt{73}}{2}$$
 2) $\frac{-5+\sqrt{73}}{2}$ 3) 10 4) 5 5) -12

19. Найдите сумму целых решений (решение, если оно единственное) системы неравенств $\begin{cases} x+12\geqslant x^2,\\ (x-2)^2>0. \end{cases}$

20. Найдите произведение большего корня на количество корней уравнения $\frac{14}{x^2-8x+22}-x^2+8x=17.$

21. В окружность радиусом 12 вписан треугольник, длины двух сторон которого равны 8 и 12. Найдите длину высоты треугольника, проведенной к его третьей стороне.

22. Найдите сумму наименьшего и наибольшего целых решений неравенства $\log_{0,3}(x+52)\leqslant 2\log_{0,3}(x-4).$

23. Найдите сумму (в градусах) наименьшего положительного и наибольшего отрицательного корней уравнения $\sin 2x - \sqrt{3}\cos x = 0$.

- **24.** Три числа составляют геометрическую прогрессию, в которой q>1. Если второй член прогрессии уменьшить на 10, то полученные три числа в том же порядке опять составят геометрическую прогрессию. Если третий член новой прогрессии уменьшить на 36, то полученные числа составят арифметическую прогрессию. Найдите сумму исходных чисел.
 - **25.** Найдите произведение суммы корней уравнения $9^{x-5} 3^{x-5} = 3^{x+3} 3^8$ на их количество.
 - **26.** Найдите количество корней уравнения $\cos x = -\left|\frac{x}{12\pi}\right|$.
 - **27.** Найдите сумму целых решений неравенства $\frac{|7x-22|-|5x-14|}{(x-1)(x-5)} \leqslant 0.$
- **28.** Куб вписан в правильную четырехугольную пирамиду так, что четыре его вершины находятся на боковых ребрах пирамиды, а четыре другие вершины на ее основании. Длина стороны основания пирамиды равна 1, высота пирамиды 3. Найдите площадь S поверхности куба. В ответ запишите значение выражения S.
 - **29.** Найдите значение выражения $\sqrt{3} \sqrt{2} \sqrt{6} 9 + \text{ctg } 262^{\circ}30'$.
- **30.** Трое рабочих (не все одинаковой квалификации) выполнили некоторую работу, работая поочередно. Сначала первый из них проработал $\frac{1}{10}$ часть времени, необходимого двум другим для выполнения всей работы. Затем второй проработал $\frac{1}{10}$ часть времени, необходимого двум другим для выполнения всей работы. И, наконец, третий проработал $\frac{1}{10}$ часть времени, необходимого двум другим для выполнения всей работы. Во сколько раз быстрее работа была бы выполнена, если бы трое рабочих работали одновременно? В ответ запишите найденное число, умноженное на 20.